Copied to
clipboard

G = C22×C8⋊D7order 448 = 26·7

Direct product of C22 and C8⋊D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×C8⋊D7, C5612C23, C28.66C24, (C2×C8)⋊36D14, C7⋊C811C23, C810(C22×D7), (C22×C8)⋊12D7, (C22×C56)⋊18C2, (C2×C56)⋊48C22, (C2×C14)⋊6M4(2), C141(C2×M4(2)), (C23×D7).8C4, C4.65(C23×D7), C23.66(C4×D7), C71(C22×M4(2)), C14.29(C23×C4), (C4×D7).33C23, (C2×C28).879C23, C28.145(C22×C4), D14.20(C22×C4), (C22×C4).470D14, (C22×Dic7).17C4, Dic7.21(C22×C4), (C22×C28).567C22, (C2×C4×D7).22C4, C4.120(C2×C4×D7), (C22×C7⋊C8)⋊22C2, (C2×C7⋊C8)⋊46C22, C2.30(D7×C22×C4), C22.75(C2×C4×D7), (C4×D7).35(C2×C4), (C2×C4).187(C4×D7), (D7×C22×C4).23C2, (C2×C28).257(C2×C4), (C2×C4×D7).301C22, (C22×D7).67(C2×C4), (C2×C4).823(C22×D7), (C2×C14).155(C22×C4), (C22×C14).102(C2×C4), (C2×Dic7).104(C2×C4), SmallGroup(448,1190)

Series: Derived Chief Lower central Upper central

C1C14 — C22×C8⋊D7
C1C7C14C28C4×D7C2×C4×D7D7×C22×C4 — C22×C8⋊D7
C7C14 — C22×C8⋊D7
C1C22×C4C22×C8

Generators and relations for C22×C8⋊D7
 G = < a,b,c,d,e | a2=b2=c8=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c5, ede=d-1 >

Subgroups: 1124 in 298 conjugacy classes, 167 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, C23, C23, D7, C14, C14, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C24, Dic7, C28, C28, D14, D14, C2×C14, C22×C8, C22×C8, C2×M4(2), C23×C4, C7⋊C8, C56, C4×D7, C2×Dic7, C2×C28, C22×D7, C22×D7, C22×C14, C22×M4(2), C8⋊D7, C2×C7⋊C8, C2×C56, C2×C4×D7, C22×Dic7, C22×C28, C23×D7, C2×C8⋊D7, C22×C7⋊C8, C22×C56, D7×C22×C4, C22×C8⋊D7
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, M4(2), C22×C4, C24, D14, C2×M4(2), C23×C4, C4×D7, C22×D7, C22×M4(2), C8⋊D7, C2×C4×D7, C23×D7, C2×C8⋊D7, D7×C22×C4, C22×C8⋊D7

Smallest permutation representation of C22×C8⋊D7
On 224 points
Generators in S224
(1 200)(2 193)(3 194)(4 195)(5 196)(6 197)(7 198)(8 199)(9 184)(10 177)(11 178)(12 179)(13 180)(14 181)(15 182)(16 183)(17 163)(18 164)(19 165)(20 166)(21 167)(22 168)(23 161)(24 162)(25 217)(26 218)(27 219)(28 220)(29 221)(30 222)(31 223)(32 224)(33 118)(34 119)(35 120)(36 113)(37 114)(38 115)(39 116)(40 117)(41 133)(42 134)(43 135)(44 136)(45 129)(46 130)(47 131)(48 132)(49 211)(50 212)(51 213)(52 214)(53 215)(54 216)(55 209)(56 210)(57 128)(58 121)(59 122)(60 123)(61 124)(62 125)(63 126)(64 127)(65 206)(66 207)(67 208)(68 201)(69 202)(70 203)(71 204)(72 205)(73 137)(74 138)(75 139)(76 140)(77 141)(78 142)(79 143)(80 144)(81 150)(82 151)(83 152)(84 145)(85 146)(86 147)(87 148)(88 149)(89 172)(90 173)(91 174)(92 175)(93 176)(94 169)(95 170)(96 171)(97 159)(98 160)(99 153)(100 154)(101 155)(102 156)(103 157)(104 158)(105 187)(106 188)(107 189)(108 190)(109 191)(110 192)(111 185)(112 186)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 25)(7 26)(8 27)(9 201)(10 202)(11 203)(12 204)(13 205)(14 206)(15 207)(16 208)(17 209)(18 210)(19 211)(20 212)(21 213)(22 214)(23 215)(24 216)(33 149)(34 150)(35 151)(36 152)(37 145)(38 146)(39 147)(40 148)(41 157)(42 158)(43 159)(44 160)(45 153)(46 154)(47 155)(48 156)(49 165)(50 166)(51 167)(52 168)(53 161)(54 162)(55 163)(56 164)(57 173)(58 174)(59 175)(60 176)(61 169)(62 170)(63 171)(64 172)(65 181)(66 182)(67 183)(68 184)(69 177)(70 178)(71 179)(72 180)(73 189)(74 190)(75 191)(76 192)(77 185)(78 186)(79 187)(80 188)(81 119)(82 120)(83 113)(84 114)(85 115)(86 116)(87 117)(88 118)(89 127)(90 128)(91 121)(92 122)(93 123)(94 124)(95 125)(96 126)(97 135)(98 136)(99 129)(100 130)(101 131)(102 132)(103 133)(104 134)(105 143)(106 144)(107 137)(108 138)(109 139)(110 140)(111 141)(112 142)(193 221)(194 222)(195 223)(196 224)(197 217)(198 218)(199 219)(200 220)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)(193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208)(209 210 211 212 213 214 215 216)(217 218 219 220 221 222 223 224)
(1 47 57 179 161 145 191)(2 48 58 180 162 146 192)(3 41 59 181 163 147 185)(4 42 60 182 164 148 186)(5 43 61 183 165 149 187)(6 44 62 184 166 150 188)(7 45 63 177 167 151 189)(8 46 64 178 168 152 190)(9 20 81 106 197 136 125)(10 21 82 107 198 129 126)(11 22 83 108 199 130 127)(12 23 84 109 200 131 128)(13 24 85 110 193 132 121)(14 17 86 111 194 133 122)(15 18 87 112 195 134 123)(16 19 88 105 196 135 124)(25 160 170 68 50 34 80)(26 153 171 69 51 35 73)(27 154 172 70 52 36 74)(28 155 173 71 53 37 75)(29 156 174 72 54 38 76)(30 157 175 65 55 39 77)(31 158 176 66 56 40 78)(32 159 169 67 49 33 79)(89 203 214 113 138 219 100)(90 204 215 114 139 220 101)(91 205 216 115 140 221 102)(92 206 209 116 141 222 103)(93 207 210 117 142 223 104)(94 208 211 118 143 224 97)(95 201 212 119 144 217 98)(96 202 213 120 137 218 99)
(1 139)(2 144)(3 141)(4 138)(5 143)(6 140)(7 137)(8 142)(9 72)(10 69)(11 66)(12 71)(13 68)(14 65)(15 70)(16 67)(17 175)(18 172)(19 169)(20 174)(21 171)(22 176)(23 173)(24 170)(25 110)(26 107)(27 112)(28 109)(29 106)(30 111)(31 108)(32 105)(33 135)(34 132)(35 129)(36 134)(37 131)(38 136)(39 133)(40 130)(41 116)(42 113)(43 118)(44 115)(45 120)(46 117)(47 114)(48 119)(49 124)(50 121)(51 126)(52 123)(53 128)(54 125)(55 122)(56 127)(57 215)(58 212)(59 209)(60 214)(61 211)(62 216)(63 213)(64 210)(73 198)(74 195)(75 200)(76 197)(77 194)(78 199)(79 196)(80 193)(81 156)(82 153)(83 158)(84 155)(85 160)(86 157)(87 154)(88 159)(89 164)(90 161)(91 166)(92 163)(93 168)(94 165)(95 162)(96 167)(97 149)(98 146)(99 151)(100 148)(101 145)(102 150)(103 147)(104 152)(177 202)(178 207)(179 204)(180 201)(181 206)(182 203)(183 208)(184 205)(185 222)(186 219)(187 224)(188 221)(189 218)(190 223)(191 220)(192 217)

G:=sub<Sym(224)| (1,200)(2,193)(3,194)(4,195)(5,196)(6,197)(7,198)(8,199)(9,184)(10,177)(11,178)(12,179)(13,180)(14,181)(15,182)(16,183)(17,163)(18,164)(19,165)(20,166)(21,167)(22,168)(23,161)(24,162)(25,217)(26,218)(27,219)(28,220)(29,221)(30,222)(31,223)(32,224)(33,118)(34,119)(35,120)(36,113)(37,114)(38,115)(39,116)(40,117)(41,133)(42,134)(43,135)(44,136)(45,129)(46,130)(47,131)(48,132)(49,211)(50,212)(51,213)(52,214)(53,215)(54,216)(55,209)(56,210)(57,128)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,206)(66,207)(67,208)(68,201)(69,202)(70,203)(71,204)(72,205)(73,137)(74,138)(75,139)(76,140)(77,141)(78,142)(79,143)(80,144)(81,150)(82,151)(83,152)(84,145)(85,146)(86,147)(87,148)(88,149)(89,172)(90,173)(91,174)(92,175)(93,176)(94,169)(95,170)(96,171)(97,159)(98,160)(99,153)(100,154)(101,155)(102,156)(103,157)(104,158)(105,187)(106,188)(107,189)(108,190)(109,191)(110,192)(111,185)(112,186), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,201)(10,202)(11,203)(12,204)(13,205)(14,206)(15,207)(16,208)(17,209)(18,210)(19,211)(20,212)(21,213)(22,214)(23,215)(24,216)(33,149)(34,150)(35,151)(36,152)(37,145)(38,146)(39,147)(40,148)(41,157)(42,158)(43,159)(44,160)(45,153)(46,154)(47,155)(48,156)(49,165)(50,166)(51,167)(52,168)(53,161)(54,162)(55,163)(56,164)(57,173)(58,174)(59,175)(60,176)(61,169)(62,170)(63,171)(64,172)(65,181)(66,182)(67,183)(68,184)(69,177)(70,178)(71,179)(72,180)(73,189)(74,190)(75,191)(76,192)(77,185)(78,186)(79,187)(80,188)(81,119)(82,120)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,127)(90,128)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126)(97,135)(98,136)(99,129)(100,130)(101,131)(102,132)(103,133)(104,134)(105,143)(106,144)(107,137)(108,138)(109,139)(110,140)(111,141)(112,142)(193,221)(194,222)(195,223)(196,224)(197,217)(198,218)(199,219)(200,220), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,47,57,179,161,145,191)(2,48,58,180,162,146,192)(3,41,59,181,163,147,185)(4,42,60,182,164,148,186)(5,43,61,183,165,149,187)(6,44,62,184,166,150,188)(7,45,63,177,167,151,189)(8,46,64,178,168,152,190)(9,20,81,106,197,136,125)(10,21,82,107,198,129,126)(11,22,83,108,199,130,127)(12,23,84,109,200,131,128)(13,24,85,110,193,132,121)(14,17,86,111,194,133,122)(15,18,87,112,195,134,123)(16,19,88,105,196,135,124)(25,160,170,68,50,34,80)(26,153,171,69,51,35,73)(27,154,172,70,52,36,74)(28,155,173,71,53,37,75)(29,156,174,72,54,38,76)(30,157,175,65,55,39,77)(31,158,176,66,56,40,78)(32,159,169,67,49,33,79)(89,203,214,113,138,219,100)(90,204,215,114,139,220,101)(91,205,216,115,140,221,102)(92,206,209,116,141,222,103)(93,207,210,117,142,223,104)(94,208,211,118,143,224,97)(95,201,212,119,144,217,98)(96,202,213,120,137,218,99), (1,139)(2,144)(3,141)(4,138)(5,143)(6,140)(7,137)(8,142)(9,72)(10,69)(11,66)(12,71)(13,68)(14,65)(15,70)(16,67)(17,175)(18,172)(19,169)(20,174)(21,171)(22,176)(23,173)(24,170)(25,110)(26,107)(27,112)(28,109)(29,106)(30,111)(31,108)(32,105)(33,135)(34,132)(35,129)(36,134)(37,131)(38,136)(39,133)(40,130)(41,116)(42,113)(43,118)(44,115)(45,120)(46,117)(47,114)(48,119)(49,124)(50,121)(51,126)(52,123)(53,128)(54,125)(55,122)(56,127)(57,215)(58,212)(59,209)(60,214)(61,211)(62,216)(63,213)(64,210)(73,198)(74,195)(75,200)(76,197)(77,194)(78,199)(79,196)(80,193)(81,156)(82,153)(83,158)(84,155)(85,160)(86,157)(87,154)(88,159)(89,164)(90,161)(91,166)(92,163)(93,168)(94,165)(95,162)(96,167)(97,149)(98,146)(99,151)(100,148)(101,145)(102,150)(103,147)(104,152)(177,202)(178,207)(179,204)(180,201)(181,206)(182,203)(183,208)(184,205)(185,222)(186,219)(187,224)(188,221)(189,218)(190,223)(191,220)(192,217)>;

G:=Group( (1,200)(2,193)(3,194)(4,195)(5,196)(6,197)(7,198)(8,199)(9,184)(10,177)(11,178)(12,179)(13,180)(14,181)(15,182)(16,183)(17,163)(18,164)(19,165)(20,166)(21,167)(22,168)(23,161)(24,162)(25,217)(26,218)(27,219)(28,220)(29,221)(30,222)(31,223)(32,224)(33,118)(34,119)(35,120)(36,113)(37,114)(38,115)(39,116)(40,117)(41,133)(42,134)(43,135)(44,136)(45,129)(46,130)(47,131)(48,132)(49,211)(50,212)(51,213)(52,214)(53,215)(54,216)(55,209)(56,210)(57,128)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,127)(65,206)(66,207)(67,208)(68,201)(69,202)(70,203)(71,204)(72,205)(73,137)(74,138)(75,139)(76,140)(77,141)(78,142)(79,143)(80,144)(81,150)(82,151)(83,152)(84,145)(85,146)(86,147)(87,148)(88,149)(89,172)(90,173)(91,174)(92,175)(93,176)(94,169)(95,170)(96,171)(97,159)(98,160)(99,153)(100,154)(101,155)(102,156)(103,157)(104,158)(105,187)(106,188)(107,189)(108,190)(109,191)(110,192)(111,185)(112,186), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,201)(10,202)(11,203)(12,204)(13,205)(14,206)(15,207)(16,208)(17,209)(18,210)(19,211)(20,212)(21,213)(22,214)(23,215)(24,216)(33,149)(34,150)(35,151)(36,152)(37,145)(38,146)(39,147)(40,148)(41,157)(42,158)(43,159)(44,160)(45,153)(46,154)(47,155)(48,156)(49,165)(50,166)(51,167)(52,168)(53,161)(54,162)(55,163)(56,164)(57,173)(58,174)(59,175)(60,176)(61,169)(62,170)(63,171)(64,172)(65,181)(66,182)(67,183)(68,184)(69,177)(70,178)(71,179)(72,180)(73,189)(74,190)(75,191)(76,192)(77,185)(78,186)(79,187)(80,188)(81,119)(82,120)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,127)(90,128)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126)(97,135)(98,136)(99,129)(100,130)(101,131)(102,132)(103,133)(104,134)(105,143)(106,144)(107,137)(108,138)(109,139)(110,140)(111,141)(112,142)(193,221)(194,222)(195,223)(196,224)(197,217)(198,218)(199,219)(200,220), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,47,57,179,161,145,191)(2,48,58,180,162,146,192)(3,41,59,181,163,147,185)(4,42,60,182,164,148,186)(5,43,61,183,165,149,187)(6,44,62,184,166,150,188)(7,45,63,177,167,151,189)(8,46,64,178,168,152,190)(9,20,81,106,197,136,125)(10,21,82,107,198,129,126)(11,22,83,108,199,130,127)(12,23,84,109,200,131,128)(13,24,85,110,193,132,121)(14,17,86,111,194,133,122)(15,18,87,112,195,134,123)(16,19,88,105,196,135,124)(25,160,170,68,50,34,80)(26,153,171,69,51,35,73)(27,154,172,70,52,36,74)(28,155,173,71,53,37,75)(29,156,174,72,54,38,76)(30,157,175,65,55,39,77)(31,158,176,66,56,40,78)(32,159,169,67,49,33,79)(89,203,214,113,138,219,100)(90,204,215,114,139,220,101)(91,205,216,115,140,221,102)(92,206,209,116,141,222,103)(93,207,210,117,142,223,104)(94,208,211,118,143,224,97)(95,201,212,119,144,217,98)(96,202,213,120,137,218,99), (1,139)(2,144)(3,141)(4,138)(5,143)(6,140)(7,137)(8,142)(9,72)(10,69)(11,66)(12,71)(13,68)(14,65)(15,70)(16,67)(17,175)(18,172)(19,169)(20,174)(21,171)(22,176)(23,173)(24,170)(25,110)(26,107)(27,112)(28,109)(29,106)(30,111)(31,108)(32,105)(33,135)(34,132)(35,129)(36,134)(37,131)(38,136)(39,133)(40,130)(41,116)(42,113)(43,118)(44,115)(45,120)(46,117)(47,114)(48,119)(49,124)(50,121)(51,126)(52,123)(53,128)(54,125)(55,122)(56,127)(57,215)(58,212)(59,209)(60,214)(61,211)(62,216)(63,213)(64,210)(73,198)(74,195)(75,200)(76,197)(77,194)(78,199)(79,196)(80,193)(81,156)(82,153)(83,158)(84,155)(85,160)(86,157)(87,154)(88,159)(89,164)(90,161)(91,166)(92,163)(93,168)(94,165)(95,162)(96,167)(97,149)(98,146)(99,151)(100,148)(101,145)(102,150)(103,147)(104,152)(177,202)(178,207)(179,204)(180,201)(181,206)(182,203)(183,208)(184,205)(185,222)(186,219)(187,224)(188,221)(189,218)(190,223)(191,220)(192,217) );

G=PermutationGroup([[(1,200),(2,193),(3,194),(4,195),(5,196),(6,197),(7,198),(8,199),(9,184),(10,177),(11,178),(12,179),(13,180),(14,181),(15,182),(16,183),(17,163),(18,164),(19,165),(20,166),(21,167),(22,168),(23,161),(24,162),(25,217),(26,218),(27,219),(28,220),(29,221),(30,222),(31,223),(32,224),(33,118),(34,119),(35,120),(36,113),(37,114),(38,115),(39,116),(40,117),(41,133),(42,134),(43,135),(44,136),(45,129),(46,130),(47,131),(48,132),(49,211),(50,212),(51,213),(52,214),(53,215),(54,216),(55,209),(56,210),(57,128),(58,121),(59,122),(60,123),(61,124),(62,125),(63,126),(64,127),(65,206),(66,207),(67,208),(68,201),(69,202),(70,203),(71,204),(72,205),(73,137),(74,138),(75,139),(76,140),(77,141),(78,142),(79,143),(80,144),(81,150),(82,151),(83,152),(84,145),(85,146),(86,147),(87,148),(88,149),(89,172),(90,173),(91,174),(92,175),(93,176),(94,169),(95,170),(96,171),(97,159),(98,160),(99,153),(100,154),(101,155),(102,156),(103,157),(104,158),(105,187),(106,188),(107,189),(108,190),(109,191),(110,192),(111,185),(112,186)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,25),(7,26),(8,27),(9,201),(10,202),(11,203),(12,204),(13,205),(14,206),(15,207),(16,208),(17,209),(18,210),(19,211),(20,212),(21,213),(22,214),(23,215),(24,216),(33,149),(34,150),(35,151),(36,152),(37,145),(38,146),(39,147),(40,148),(41,157),(42,158),(43,159),(44,160),(45,153),(46,154),(47,155),(48,156),(49,165),(50,166),(51,167),(52,168),(53,161),(54,162),(55,163),(56,164),(57,173),(58,174),(59,175),(60,176),(61,169),(62,170),(63,171),(64,172),(65,181),(66,182),(67,183),(68,184),(69,177),(70,178),(71,179),(72,180),(73,189),(74,190),(75,191),(76,192),(77,185),(78,186),(79,187),(80,188),(81,119),(82,120),(83,113),(84,114),(85,115),(86,116),(87,117),(88,118),(89,127),(90,128),(91,121),(92,122),(93,123),(94,124),(95,125),(96,126),(97,135),(98,136),(99,129),(100,130),(101,131),(102,132),(103,133),(104,134),(105,143),(106,144),(107,137),(108,138),(109,139),(110,140),(111,141),(112,142),(193,221),(194,222),(195,223),(196,224),(197,217),(198,218),(199,219),(200,220)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192),(193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208),(209,210,211,212,213,214,215,216),(217,218,219,220,221,222,223,224)], [(1,47,57,179,161,145,191),(2,48,58,180,162,146,192),(3,41,59,181,163,147,185),(4,42,60,182,164,148,186),(5,43,61,183,165,149,187),(6,44,62,184,166,150,188),(7,45,63,177,167,151,189),(8,46,64,178,168,152,190),(9,20,81,106,197,136,125),(10,21,82,107,198,129,126),(11,22,83,108,199,130,127),(12,23,84,109,200,131,128),(13,24,85,110,193,132,121),(14,17,86,111,194,133,122),(15,18,87,112,195,134,123),(16,19,88,105,196,135,124),(25,160,170,68,50,34,80),(26,153,171,69,51,35,73),(27,154,172,70,52,36,74),(28,155,173,71,53,37,75),(29,156,174,72,54,38,76),(30,157,175,65,55,39,77),(31,158,176,66,56,40,78),(32,159,169,67,49,33,79),(89,203,214,113,138,219,100),(90,204,215,114,139,220,101),(91,205,216,115,140,221,102),(92,206,209,116,141,222,103),(93,207,210,117,142,223,104),(94,208,211,118,143,224,97),(95,201,212,119,144,217,98),(96,202,213,120,137,218,99)], [(1,139),(2,144),(3,141),(4,138),(5,143),(6,140),(7,137),(8,142),(9,72),(10,69),(11,66),(12,71),(13,68),(14,65),(15,70),(16,67),(17,175),(18,172),(19,169),(20,174),(21,171),(22,176),(23,173),(24,170),(25,110),(26,107),(27,112),(28,109),(29,106),(30,111),(31,108),(32,105),(33,135),(34,132),(35,129),(36,134),(37,131),(38,136),(39,133),(40,130),(41,116),(42,113),(43,118),(44,115),(45,120),(46,117),(47,114),(48,119),(49,124),(50,121),(51,126),(52,123),(53,128),(54,125),(55,122),(56,127),(57,215),(58,212),(59,209),(60,214),(61,211),(62,216),(63,213),(64,210),(73,198),(74,195),(75,200),(76,197),(77,194),(78,199),(79,196),(80,193),(81,156),(82,153),(83,158),(84,155),(85,160),(86,157),(87,154),(88,159),(89,164),(90,161),(91,166),(92,163),(93,168),(94,165),(95,162),(96,167),(97,149),(98,146),(99,151),(100,148),(101,145),(102,150),(103,147),(104,152),(177,202),(178,207),(179,204),(180,201),(181,206),(182,203),(183,208),(184,205),(185,222),(186,219),(187,224),(188,221),(189,218),(190,223),(191,220),(192,217)]])

136 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I4J4K4L7A7B7C8A···8H8I···8P14A···14U28A···28X56A···56AV
order12···222224···444447778···88···814···1428···2856···56
size11···1141414141···1141414142222···214···142···22···22···2

136 irreducible representations

dim111111112222222
type++++++++
imageC1C2C2C2C2C4C4C4D7M4(2)D14D14C4×D7C4×D7C8⋊D7
kernelC22×C8⋊D7C2×C8⋊D7C22×C7⋊C8C22×C56D7×C22×C4C2×C4×D7C22×Dic7C23×D7C22×C8C2×C14C2×C8C22×C4C2×C4C23C22
# reps11211112223818318648

Matrix representation of C22×C8⋊D7 in GL4(𝔽113) generated by

112000
011200
001120
000112
,
112000
0100
0010
0001
,
1000
09800
008631
002827
,
1000
0100
00104112
007233
,
112000
0100
008010
007233
G:=sub<GL(4,GF(113))| [112,0,0,0,0,112,0,0,0,0,112,0,0,0,0,112],[112,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,98,0,0,0,0,86,28,0,0,31,27],[1,0,0,0,0,1,0,0,0,0,104,72,0,0,112,33],[112,0,0,0,0,1,0,0,0,0,80,72,0,0,10,33] >;

C22×C8⋊D7 in GAP, Magma, Sage, TeX

C_2^2\times C_8\rtimes D_7
% in TeX

G:=Group("C2^2xC8:D7");
// GroupNames label

G:=SmallGroup(448,1190);
// by ID

G=gap.SmallGroup(448,1190);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,1123,80,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^8=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^5,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽